Copied to
clipboard

G = C42.34Q8order 128 = 27

34th non-split extension by C42 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.34Q8, C23.302C24, C424C4.19C2, (C2×C42).30C22, C4.40(C42.C2), C22.62(C22×Q8), (C22×C4).502C23, C45(C23.81C23), C45(C23.83C23), C23.83C23.52C2, C23.81C23.56C2, C2.C42.537C22, C2.9(C23.37C23), C2.17(C23.36C23), (C4×C4⋊C4).47C2, (C2×C4).123(C2×Q8), C2.7(C2×C42.C2), (C2×C4).93(C4○D4), (C2×C4⋊C4).844C22, C22.182(C2×C4○D4), (C2×C4)3(C23.81C23), SmallGroup(128,1134)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C42.34Q8
C1C2C22C23C22×C4C2×C42C4×C4⋊C4 — C42.34Q8
C1C23 — C42.34Q8
C1C22×C4 — C42.34Q8
C1C23 — C42.34Q8

Generators and relations for C42.34Q8
 G = < a,b,c,d | a4=b4=c4=1, d2=a2b2c2, ab=ba, cac-1=a-1b2, dad-1=ab2, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 308 in 200 conjugacy classes, 108 normal (8 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C23, C42, C42, C4⋊C4, C22×C4, C22×C4, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C424C4, C4×C4⋊C4, C23.81C23, C23.83C23, C42.34Q8
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C4○D4, C24, C42.C2, C22×Q8, C2×C4○D4, C2×C42.C2, C23.36C23, C23.37C23, C42.34Q8

Smallest permutation representation of C42.34Q8
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 124 35 30)(2 121 36 31)(3 122 33 32)(4 123 34 29)(5 72 104 44)(6 69 101 41)(7 70 102 42)(8 71 103 43)(9 62 95 82)(10 63 96 83)(11 64 93 84)(12 61 94 81)(13 80 107 60)(14 77 108 57)(15 78 105 58)(16 79 106 59)(17 51 111 90)(18 52 112 91)(19 49 109 92)(20 50 110 89)(21 88 115 55)(22 85 116 56)(23 86 113 53)(24 87 114 54)(25 67 119 39)(26 68 120 40)(27 65 117 37)(28 66 118 38)(45 99 73 125)(46 100 74 126)(47 97 75 127)(48 98 76 128)
(1 125 117 42)(2 98 118 69)(3 127 119 44)(4 100 120 71)(5 122 47 39)(6 31 48 66)(7 124 45 37)(8 29 46 68)(9 109 59 85)(10 18 60 55)(11 111 57 87)(12 20 58 53)(13 21 63 52)(14 114 64 90)(15 23 61 50)(16 116 62 92)(17 77 54 93)(19 79 56 95)(22 82 49 106)(24 84 51 108)(25 72 33 97)(26 43 34 126)(27 70 35 99)(28 41 36 128)(30 73 65 102)(32 75 67 104)(38 101 121 76)(40 103 123 74)(78 86 94 110)(80 88 96 112)(81 89 105 113)(83 91 107 115)
(1 80 25 12)(2 57 26 95)(3 78 27 10)(4 59 28 93)(5 113 73 52)(6 24 74 92)(7 115 75 50)(8 22 76 90)(9 36 77 120)(11 34 79 118)(13 39 81 30)(14 68 82 121)(15 37 83 32)(16 66 84 123)(17 71 85 128)(18 44 86 99)(19 69 87 126)(20 42 88 97)(21 47 89 102)(23 45 91 104)(29 106 38 64)(31 108 40 62)(33 58 117 96)(35 60 119 94)(41 54 100 109)(43 56 98 111)(46 49 101 114)(48 51 103 116)(53 125 112 72)(55 127 110 70)(61 124 107 67)(63 122 105 65)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,124,35,30)(2,121,36,31)(3,122,33,32)(4,123,34,29)(5,72,104,44)(6,69,101,41)(7,70,102,42)(8,71,103,43)(9,62,95,82)(10,63,96,83)(11,64,93,84)(12,61,94,81)(13,80,107,60)(14,77,108,57)(15,78,105,58)(16,79,106,59)(17,51,111,90)(18,52,112,91)(19,49,109,92)(20,50,110,89)(21,88,115,55)(22,85,116,56)(23,86,113,53)(24,87,114,54)(25,67,119,39)(26,68,120,40)(27,65,117,37)(28,66,118,38)(45,99,73,125)(46,100,74,126)(47,97,75,127)(48,98,76,128), (1,125,117,42)(2,98,118,69)(3,127,119,44)(4,100,120,71)(5,122,47,39)(6,31,48,66)(7,124,45,37)(8,29,46,68)(9,109,59,85)(10,18,60,55)(11,111,57,87)(12,20,58,53)(13,21,63,52)(14,114,64,90)(15,23,61,50)(16,116,62,92)(17,77,54,93)(19,79,56,95)(22,82,49,106)(24,84,51,108)(25,72,33,97)(26,43,34,126)(27,70,35,99)(28,41,36,128)(30,73,65,102)(32,75,67,104)(38,101,121,76)(40,103,123,74)(78,86,94,110)(80,88,96,112)(81,89,105,113)(83,91,107,115), (1,80,25,12)(2,57,26,95)(3,78,27,10)(4,59,28,93)(5,113,73,52)(6,24,74,92)(7,115,75,50)(8,22,76,90)(9,36,77,120)(11,34,79,118)(13,39,81,30)(14,68,82,121)(15,37,83,32)(16,66,84,123)(17,71,85,128)(18,44,86,99)(19,69,87,126)(20,42,88,97)(21,47,89,102)(23,45,91,104)(29,106,38,64)(31,108,40,62)(33,58,117,96)(35,60,119,94)(41,54,100,109)(43,56,98,111)(46,49,101,114)(48,51,103,116)(53,125,112,72)(55,127,110,70)(61,124,107,67)(63,122,105,65)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,124,35,30)(2,121,36,31)(3,122,33,32)(4,123,34,29)(5,72,104,44)(6,69,101,41)(7,70,102,42)(8,71,103,43)(9,62,95,82)(10,63,96,83)(11,64,93,84)(12,61,94,81)(13,80,107,60)(14,77,108,57)(15,78,105,58)(16,79,106,59)(17,51,111,90)(18,52,112,91)(19,49,109,92)(20,50,110,89)(21,88,115,55)(22,85,116,56)(23,86,113,53)(24,87,114,54)(25,67,119,39)(26,68,120,40)(27,65,117,37)(28,66,118,38)(45,99,73,125)(46,100,74,126)(47,97,75,127)(48,98,76,128), (1,125,117,42)(2,98,118,69)(3,127,119,44)(4,100,120,71)(5,122,47,39)(6,31,48,66)(7,124,45,37)(8,29,46,68)(9,109,59,85)(10,18,60,55)(11,111,57,87)(12,20,58,53)(13,21,63,52)(14,114,64,90)(15,23,61,50)(16,116,62,92)(17,77,54,93)(19,79,56,95)(22,82,49,106)(24,84,51,108)(25,72,33,97)(26,43,34,126)(27,70,35,99)(28,41,36,128)(30,73,65,102)(32,75,67,104)(38,101,121,76)(40,103,123,74)(78,86,94,110)(80,88,96,112)(81,89,105,113)(83,91,107,115), (1,80,25,12)(2,57,26,95)(3,78,27,10)(4,59,28,93)(5,113,73,52)(6,24,74,92)(7,115,75,50)(8,22,76,90)(9,36,77,120)(11,34,79,118)(13,39,81,30)(14,68,82,121)(15,37,83,32)(16,66,84,123)(17,71,85,128)(18,44,86,99)(19,69,87,126)(20,42,88,97)(21,47,89,102)(23,45,91,104)(29,106,38,64)(31,108,40,62)(33,58,117,96)(35,60,119,94)(41,54,100,109)(43,56,98,111)(46,49,101,114)(48,51,103,116)(53,125,112,72)(55,127,110,70)(61,124,107,67)(63,122,105,65) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,124,35,30),(2,121,36,31),(3,122,33,32),(4,123,34,29),(5,72,104,44),(6,69,101,41),(7,70,102,42),(8,71,103,43),(9,62,95,82),(10,63,96,83),(11,64,93,84),(12,61,94,81),(13,80,107,60),(14,77,108,57),(15,78,105,58),(16,79,106,59),(17,51,111,90),(18,52,112,91),(19,49,109,92),(20,50,110,89),(21,88,115,55),(22,85,116,56),(23,86,113,53),(24,87,114,54),(25,67,119,39),(26,68,120,40),(27,65,117,37),(28,66,118,38),(45,99,73,125),(46,100,74,126),(47,97,75,127),(48,98,76,128)], [(1,125,117,42),(2,98,118,69),(3,127,119,44),(4,100,120,71),(5,122,47,39),(6,31,48,66),(7,124,45,37),(8,29,46,68),(9,109,59,85),(10,18,60,55),(11,111,57,87),(12,20,58,53),(13,21,63,52),(14,114,64,90),(15,23,61,50),(16,116,62,92),(17,77,54,93),(19,79,56,95),(22,82,49,106),(24,84,51,108),(25,72,33,97),(26,43,34,126),(27,70,35,99),(28,41,36,128),(30,73,65,102),(32,75,67,104),(38,101,121,76),(40,103,123,74),(78,86,94,110),(80,88,96,112),(81,89,105,113),(83,91,107,115)], [(1,80,25,12),(2,57,26,95),(3,78,27,10),(4,59,28,93),(5,113,73,52),(6,24,74,92),(7,115,75,50),(8,22,76,90),(9,36,77,120),(11,34,79,118),(13,39,81,30),(14,68,82,121),(15,37,83,32),(16,66,84,123),(17,71,85,128),(18,44,86,99),(19,69,87,126),(20,42,88,97),(21,47,89,102),(23,45,91,104),(29,106,38,64),(31,108,40,62),(33,58,117,96),(35,60,119,94),(41,54,100,109),(43,56,98,111),(46,49,101,114),(48,51,103,116),(53,125,112,72),(55,127,110,70),(61,124,107,67),(63,122,105,65)]])

44 conjugacy classes

class 1 2A···2G4A···4H4I···4AJ
order12···24···44···4
size11···11···14···4

44 irreducible representations

dim1111122
type+++++-
imageC1C2C2C2C2Q8C4○D4
kernelC42.34Q8C424C4C4×C4⋊C4C23.81C23C23.83C23C42C2×C4
# reps11644424

Matrix representation of C42.34Q8 in GL6(𝔽5)

030000
300000
002200
000300
000001
000040
,
100000
010000
003000
000300
000010
000001
,
300000
020000
002200
000300
000001
000010
,
010000
100000
001100
003400
000020
000002

G:=sub<GL(6,GF(5))| [0,3,0,0,0,0,3,0,0,0,0,0,0,0,2,0,0,0,0,0,2,3,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,2,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,3,0,0,0,0,1,4,0,0,0,0,0,0,2,0,0,0,0,0,0,2] >;

C42.34Q8 in GAP, Magma, Sage, TeX

C_4^2._{34}Q_8
% in TeX

G:=Group("C4^2.34Q8");
// GroupNames label

G:=SmallGroup(128,1134);
// by ID

G=gap.SmallGroup(128,1134);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,232,758,723,184,80]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2*b^2*c^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a*b^2,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽